/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_DNN_DNN_HPP #define OPENCV_DNN_DNN_HPP #include #include #if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS #define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v11 { #define CV__DNN_EXPERIMENTAL_NS_END } namespace cv { namespace dnn { namespace experimental_dnn_34_v11 { } using namespace experimental_dnn_34_v11; }} #else #define CV__DNN_EXPERIMENTAL_NS_BEGIN #define CV__DNN_EXPERIMENTAL_NS_END #endif #include namespace cv { namespace dnn { CV__DNN_EXPERIMENTAL_NS_BEGIN //! @addtogroup dnn //! @{ typedef std::vector MatShape; /** * @brief Enum of computation backends supported by layers. * @see Net::setPreferableBackend */ enum Backend { //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if //! OpenCV is built with Intel's Inference Engine library or //! DNN_BACKEND_OPENCV otherwise. DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV }; /** * @brief Enum of target devices for computations. * @see Net::setPreferableTarget */ enum Target { DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, //! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. DNN_TARGET_FPGA }; CV_EXPORTS std::vector< std::pair > getAvailableBackends(); CV_EXPORTS std::vector getAvailableTargets(Backend be); /** @brief This class provides all data needed to initialize layer. * * It includes dictionary with scalar params (which can be read by using Dict interface), * blob params #blobs and optional meta information: #name and #type of layer instance. */ class CV_EXPORTS LayerParams : public Dict { public: //TODO: Add ability to name blob params std::vector blobs; //!< List of learned parameters stored as blobs. String name; //!< Name of the layer instance (optional, can be used internal purposes). String type; //!< Type name which was used for creating layer by layer factory (optional). }; /** * @brief Derivatives of this class encapsulates functions of certain backends. */ class BackendNode { public: BackendNode(int backendId); virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. int backendId; //!< Backend identifier. }; /** * @brief Derivatives of this class wraps cv::Mat for different backends and targets. */ class BackendWrapper { public: BackendWrapper(int backendId, int targetId); /** * @brief Wrap cv::Mat for specific backend and target. * @param[in] targetId Target identifier. * @param[in] m cv::Mat for wrapping. * * Make CPU->GPU data transfer if it's require for the target. */ BackendWrapper(int targetId, const cv::Mat& m); /** * @brief Make wrapper for reused cv::Mat. * @param[in] base Wrapper of cv::Mat that will be reused. * @param[in] shape Specific shape. * * Initialize wrapper from another one. It'll wrap the same host CPU * memory and mustn't allocate memory on device(i.e. GPU). It might * has different shape. Use in case of CPU memory reusing for reuse * associated memory on device too. */ BackendWrapper(const Ptr& base, const MatShape& shape); virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. /** * @brief Transfer data to CPU host memory. */ virtual void copyToHost() = 0; /** * @brief Indicate that an actual data is on CPU. */ virtual void setHostDirty() = 0; int backendId; //!< Backend identifier. int targetId; //!< Target identifier. }; class CV_EXPORTS ActivationLayer; /** @brief This interface class allows to build new Layers - are building blocks of networks. * * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. */ class CV_EXPORTS_W Layer : public Algorithm { public: //! List of learned parameters must be stored here to allow read them by using Net::getParam(). CV_PROP_RW std::vector blobs; /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead * @param[in] input vector of already allocated input blobs * @param[out] output vector of already allocated output blobs * * If this method is called after network has allocated all memory for input and output blobs * and before inferencing. */ CV_DEPRECATED_EXTERNAL virtual void finalize(const std::vector &input, std::vector &output); /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. * @param[in] inputs vector of already allocated input blobs * @param[out] outputs vector of already allocated output blobs * * If this method is called after network has allocated all memory for input and output blobs * and before inferencing. */ CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs); /** @brief Given the @p input blobs, computes the output @p blobs. * @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead * @param[in] input the input blobs. * @param[out] output allocated output blobs, which will store results of the computation. * @param[out] internals allocated internal blobs */ CV_DEPRECATED_EXTERNAL virtual void forward(std::vector &input, std::vector &output, std::vector &internals); /** @brief Given the @p input blobs, computes the output @p blobs. * @param[in] inputs the input blobs. * @param[out] outputs allocated output blobs, which will store results of the computation. * @param[out] internals allocated internal blobs */ virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); /** @brief Given the @p input blobs, computes the output @p blobs. * @param[in] inputs the input blobs. * @param[out] outputs allocated output blobs, which will store results of the computation. * @param[out] internals allocated internal blobs */ void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); /** @brief * @overload * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead */ CV_DEPRECATED_EXTERNAL void finalize(const std::vector &inputs, CV_OUT std::vector &outputs); /** @brief * @overload * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead */ CV_DEPRECATED std::vector finalize(const std::vector &inputs); /** @brief Allocates layer and computes output. * @deprecated This method will be removed in the future release. */ CV_DEPRECATED CV_WRAP void run(const std::vector &inputs, CV_OUT std::vector &outputs, CV_IN_OUT std::vector &internals); /** @brief Returns index of input blob into the input array. * @param inputName label of input blob * * Each layer input and output can be labeled to easily identify them using "%[.output_name]" notation. * This method maps label of input blob to its index into input vector. */ virtual int inputNameToIndex(String inputName); /** @brief Returns index of output blob in output array. * @see inputNameToIndex() */ CV_WRAP virtual int outputNameToIndex(const String& outputName); /** * @brief Ask layer if it support specific backend for doing computations. * @param[in] backendId computation backend identifier. * @see Backend */ virtual bool supportBackend(int backendId); /** * @brief Returns Halide backend node. * @param[in] inputs Input Halide buffers. * @see BackendNode, BackendWrapper * * Input buffers should be exactly the same that will be used in forward invocations. * Despite we can use Halide::ImageParam based on input shape only, * it helps prevent some memory management issues (if something wrong, * Halide tests will be failed). */ virtual Ptr initHalide(const std::vector > &inputs); virtual Ptr initInfEngine(const std::vector > &inputs); /** * @brief Automatic Halide scheduling based on layer hyper-parameters. * @param[in] node Backend node with Halide functions. * @param[in] inputs Blobs that will be used in forward invocations. * @param[in] outputs Blobs that will be used in forward invocations. * @param[in] targetId Target identifier * @see BackendNode, Target * * Layer don't use own Halide::Func members because we can have applied * layers fusing. In this way the fused function should be scheduled. */ virtual void applyHalideScheduler(Ptr& node, const std::vector &inputs, const std::vector &outputs, int targetId) const; /** * @brief Implement layers fusing. * @param[in] node Backend node of bottom layer. * @see BackendNode * * Actual for graph-based backends. If layer attached successfully, * returns non-empty cv::Ptr to node of the same backend. * Fuse only over the last function. */ virtual Ptr tryAttach(const Ptr& node); /** * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. * @param[in] layer The subsequent activation layer. * * Returns true if the activation layer has been attached successfully. */ virtual bool setActivation(const Ptr& layer); /** * @brief Try to fuse current layer with a next one * @param[in] top Next layer to be fused. * @returns True if fusion was performed. */ virtual bool tryFuse(Ptr& top); /** * @brief Returns parameters of layers with channel-wise multiplication and addition. * @param[out] scale Channel-wise multipliers. Total number of values should * be equal to number of channels. * @param[out] shift Channel-wise offsets. Total number of values should * be equal to number of channels. * * Some layers can fuse their transformations with further layers. * In example, convolution + batch normalization. This way base layer * use weights from layer after it. Fused layer is skipped. * By default, @p scale and @p shift are empty that means layer has no * element-wise multiplications or additions. */ virtual void getScaleShift(Mat& scale, Mat& shift) const; /** * @brief "Deattaches" all the layers, attached to particular layer. */ virtual void unsetAttached(); virtual bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const; virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;} CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. CV_PROP String type; //!< Type name which was used for creating layer by layer factory. CV_PROP int preferableTarget; //!< prefer target for layer forwarding Layer(); explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. virtual ~Layer(); }; /** @brief This class allows to create and manipulate comprehensive artificial neural networks. * * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, * and edges specify relationships between layers inputs and outputs. * * Each network layer has unique integer id and unique string name inside its network. * LayerId can store either layer name or layer id. * * This class supports reference counting of its instances, i. e. copies point to the same instance. */ class CV_EXPORTS_W_SIMPLE Net { public: CV_WRAP Net(); //!< Default constructor. CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. /** @brief Create a network from Intel's Model Optimizer intermediate representation. * @param[in] xml XML configuration file with network's topology. * @param[in] bin Binary file with trained weights. * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine * backend. */ CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin); /** Returns true if there are no layers in the network. */ CV_WRAP bool empty() const; /** @brief Adds new layer to the net. * @param name unique name of the adding layer. * @param type typename of the adding layer (type must be registered in LayerRegister). * @param params parameters which will be used to initialize the creating layer. * @returns unique identifier of created layer, or -1 if a failure will happen. */ int addLayer(const String &name, const String &type, LayerParams ¶ms); /** @brief Adds new layer and connects its first input to the first output of previously added layer. * @see addLayer() */ int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); /** @brief Converts string name of the layer to the integer identifier. * @returns id of the layer, or -1 if the layer wasn't found. */ CV_WRAP int getLayerId(const String &layer); CV_WRAP std::vector getLayerNames() const; /** @brief Container for strings and integers. */ typedef DictValue LayerId; /** @brief Returns pointer to layer with specified id or name which the network use. */ CV_WRAP Ptr getLayer(LayerId layerId); /** @brief Returns pointers to input layers of specific layer. */ std::vector > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP /** @brief Connects output of the first layer to input of the second layer. * @param outPin descriptor of the first layer output. * @param inpPin descriptor of the second layer input. * * Descriptors have the following template <layer_name>[.input_number]: * - the first part of the template layer_name is sting name of the added layer. * If this part is empty then the network input pseudo layer will be used; * - the second optional part of the template input_number * is either number of the layer input, either label one. * If this part is omitted then the first layer input will be used. * * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() */ CV_WRAP void connect(String outPin, String inpPin); /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. * @param outLayerId identifier of the first layer * @param outNum number of the first layer output * @param inpLayerId identifier of the second layer * @param inpNum number of the second layer input */ void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); /** @brief Sets outputs names of the network input pseudo layer. * * Each net always has special own the network input pseudo layer with id=0. * This layer stores the user blobs only and don't make any computations. * In fact, this layer provides the only way to pass user data into the network. * As any other layer, this layer can label its outputs and this function provides an easy way to do this. */ CV_WRAP void setInputsNames(const std::vector &inputBlobNames); /** @brief Runs forward pass to compute output of layer with name @p outputName. * @param outputName name for layer which output is needed to get * @return blob for first output of specified layer. * @details By default runs forward pass for the whole network. */ CV_WRAP Mat forward(const String& outputName = String()); /** @brief Runs forward pass to compute output of layer with name @p outputName. * @param outputBlobs contains all output blobs for specified layer. * @param outputName name for layer which output is needed to get * @details If @p outputName is empty, runs forward pass for the whole network. */ CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()); /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. * @param outputBlobs contains blobs for first outputs of specified layers. * @param outBlobNames names for layers which outputs are needed to get */ CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const std::vector& outBlobNames); /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. * @param outBlobNames names for layers which outputs are needed to get */ CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector >& outputBlobs, const std::vector& outBlobNames); /** * @brief Compile Halide layers. * @param[in] scheduler Path to YAML file with scheduling directives. * @see setPreferableBackend * * Schedule layers that support Halide backend. Then compile them for * specific target. For layers that not represented in scheduling file * or if no manual scheduling used at all, automatic scheduling will be applied. */ CV_WRAP void setHalideScheduler(const String& scheduler); /** * @brief Ask network to use specific computation backend where it supported. * @param[in] backendId backend identifier. * @see Backend * * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. */ CV_WRAP void setPreferableBackend(int backendId); /** * @brief Ask network to make computations on specific target device. * @param[in] targetId target identifier. * @see Target * * List of supported combinations backend / target: * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | * |------------------------|--------------------|------------------------------|--------------------| * | DNN_TARGET_CPU | + | + | + | * | DNN_TARGET_OPENCL | + | + | + | * | DNN_TARGET_OPENCL_FP16 | + | + | | * | DNN_TARGET_MYRIAD | | + | | * | DNN_TARGET_FPGA | | + | | */ CV_WRAP void setPreferableTarget(int targetId); /** @brief Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @param scalefactor An optional normalization scale. * @param mean An optional mean subtraction values. * @see connect(String, String) to know format of the descriptor. * * If scale or mean values are specified, a final input blob is computed * as: * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f] */ CV_WRAP void setInput(InputArray blob, const String& name = "", double scalefactor = 1.0, const Scalar& mean = Scalar()); /** @brief Sets the new value for the learned param of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @param blob the new value. * @see Layer::blobs * @note If shape of the new blob differs from the previous shape, * then the following forward pass may fail. */ CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob); /** @brief Returns parameter blob of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @see Layer::blobs */ CV_WRAP Mat getParam(LayerId layer, int numParam = 0); /** @brief Returns indexes of layers with unconnected outputs. */ CV_WRAP std::vector getUnconnectedOutLayers() const; /** @brief Returns names of layers with unconnected outputs. */ CV_WRAP std::vector getUnconnectedOutLayersNames() const; /** @brief Returns input and output shapes for all layers in loaded model; * preliminary inferencing isn't necessary. * @param netInputShapes shapes for all input blobs in net input layer. * @param layersIds output parameter for layer IDs. * @param inLayersShapes output parameter for input layers shapes; * order is the same as in layersIds * @param outLayersShapes output parameter for output layers shapes; * order is the same as in layersIds */ CV_WRAP void getLayersShapes(const std::vector& netInputShapes, CV_OUT std::vector& layersIds, CV_OUT std::vector >& inLayersShapes, CV_OUT std::vector >& outLayersShapes) const; /** @overload */ CV_WRAP void getLayersShapes(const MatShape& netInputShape, CV_OUT std::vector& layersIds, CV_OUT std::vector >& inLayersShapes, CV_OUT std::vector >& outLayersShapes) const; /** @brief Returns input and output shapes for layer with specified * id in loaded model; preliminary inferencing isn't necessary. * @param netInputShape shape input blob in net input layer. * @param layerId id for layer. * @param inLayerShapes output parameter for input layers shapes; * order is the same as in layersIds * @param outLayerShapes output parameter for output layers shapes; * order is the same as in layersIds */ void getLayerShapes(const MatShape& netInputShape, const int layerId, CV_OUT std::vector& inLayerShapes, CV_OUT std::vector& outLayerShapes) const; // FIXIT: CV_WRAP /** @overload */ void getLayerShapes(const std::vector& netInputShapes, const int layerId, CV_OUT std::vector& inLayerShapes, CV_OUT std::vector& outLayerShapes) const; // FIXIT: CV_WRAP /** @brief Computes FLOP for whole loaded model with specified input shapes. * @param netInputShapes vector of shapes for all net inputs. * @returns computed FLOP. */ CV_WRAP int64 getFLOPS(const std::vector& netInputShapes) const; /** @overload */ CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; /** @overload */ CV_WRAP int64 getFLOPS(const int layerId, const std::vector& netInputShapes) const; /** @overload */ CV_WRAP int64 getFLOPS(const int layerId, const MatShape& netInputShape) const; /** @brief Returns list of types for layer used in model. * @param layersTypes output parameter for returning types. */ CV_WRAP void getLayerTypes(CV_OUT std::vector& layersTypes) const; /** @brief Returns count of layers of specified type. * @param layerType type. * @returns count of layers */ CV_WRAP int getLayersCount(const String& layerType) const; /** @brief Computes bytes number which are required to store * all weights and intermediate blobs for model. * @param netInputShapes vector of shapes for all net inputs. * @param weights output parameter to store resulting bytes for weights. * @param blobs output parameter to store resulting bytes for intermediate blobs. */ void getMemoryConsumption(const std::vector& netInputShapes, CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP /** @overload */ CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, CV_OUT size_t& weights, CV_OUT size_t& blobs) const; /** @overload */ CV_WRAP void getMemoryConsumption(const int layerId, const std::vector& netInputShapes, CV_OUT size_t& weights, CV_OUT size_t& blobs) const; /** @overload */ CV_WRAP void getMemoryConsumption(const int layerId, const MatShape& netInputShape, CV_OUT size_t& weights, CV_OUT size_t& blobs) const; /** @brief Computes bytes number which are required to store * all weights and intermediate blobs for each layer. * @param netInputShapes vector of shapes for all net inputs. * @param layerIds output vector to save layer IDs. * @param weights output parameter to store resulting bytes for weights. * @param blobs output parameter to store resulting bytes for intermediate blobs. */ void getMemoryConsumption(const std::vector& netInputShapes, CV_OUT std::vector& layerIds, CV_OUT std::vector& weights, CV_OUT std::vector& blobs) const; // FIXIT: CV_WRAP /** @overload */ void getMemoryConsumption(const MatShape& netInputShape, CV_OUT std::vector& layerIds, CV_OUT std::vector& weights, CV_OUT std::vector& blobs) const; // FIXIT: CV_WRAP /** @brief Enables or disables layer fusion in the network. * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. */ CV_WRAP void enableFusion(bool fusion); /** @brief Returns overall time for inference and timings (in ticks) for layers. * Indexes in returned vector correspond to layers ids. Some layers can be fused with others, * in this case zero ticks count will be return for that skipped layers. * @param timings vector for tick timings for all layers. * @return overall ticks for model inference. */ CV_WRAP int64 getPerfProfile(CV_OUT std::vector& timings); private: struct Impl; Ptr impl; }; /** @brief Reads a network model stored in Darknet model files. * @param cfgFile path to the .cfg file with text description of the network architecture. * @param darknetModel path to the .weights file with learned network. * @returns Network object that ready to do forward, throw an exception in failure cases. * @returns Net object. */ CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); /** @brief Reads a network model stored in Darknet model files. * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. * @param bufferModel A buffer contains a content of .weights file with learned network. * @returns Net object. */ CV_EXPORTS_W Net readNetFromDarknet(const std::vector& bufferCfg, const std::vector& bufferModel = std::vector()); /** @brief Reads a network model stored in Darknet model files. * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. * @param lenCfg Number of bytes to read from bufferCfg * @param bufferModel A buffer contains a content of .weights file with learned network. * @param lenModel Number of bytes to read from bufferModel * @returns Net object. */ CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferModel = NULL, size_t lenModel = 0); /** @brief Reads a network model stored in Caffe framework's format. * @param prototxt path to the .prototxt file with text description of the network architecture. * @param caffeModel path to the .caffemodel file with learned network. * @returns Net object. */ CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); /** @brief Reads a network model stored in Caffe model in memory. * @param bufferProto buffer containing the content of the .prototxt file * @param bufferModel buffer containing the content of the .caffemodel file * @returns Net object. */ CV_EXPORTS_W Net readNetFromCaffe(const std::vector& bufferProto, const std::vector& bufferModel = std::vector()); /** @brief Reads a network model stored in Caffe model in memory. * @details This is an overloaded member function, provided for convenience. * It differs from the above function only in what argument(s) it accepts. * @param bufferProto buffer containing the content of the .prototxt file * @param lenProto length of bufferProto * @param bufferModel buffer containing the content of the .caffemodel file * @param lenModel length of bufferModel * @returns Net object. */ CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, const char *bufferModel = NULL, size_t lenModel = 0); /** @brief Reads a network model stored in TensorFlow framework's format. * @param model path to the .pb file with binary protobuf description of the network architecture * @param config path to the .pbtxt file that contains text graph definition in protobuf format. * Resulting Net object is built by text graph using weights from a binary one that * let us make it more flexible. * @returns Net object. */ CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); /** @brief Reads a network model stored in TensorFlow framework's format. * @param bufferModel buffer containing the content of the pb file * @param bufferConfig buffer containing the content of the pbtxt file * @returns Net object. */ CV_EXPORTS_W Net readNetFromTensorflow(const std::vector& bufferModel, const std::vector& bufferConfig = std::vector()); /** @brief Reads a network model stored in TensorFlow framework's format. * @details This is an overloaded member function, provided for convenience. * It differs from the above function only in what argument(s) it accepts. * @param bufferModel buffer containing the content of the pb file * @param lenModel length of bufferModel * @param bufferConfig buffer containing the content of the pbtxt file * @param lenConfig length of bufferConfig */ CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, const char *bufferConfig = NULL, size_t lenConfig = 0); /** * @brief Reads a network model stored in Torch7 framework's format. * @param model path to the file, dumped from Torch by using torch.save() function. * @param isBinary specifies whether the network was serialized in ascii mode or binary. * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch. * @returns Net object. * * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, * which has various bit-length on different systems. * * The loading file must contain serialized nn.Module object * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. * * List of supported layers (i.e. object instances derived from Torch nn.Module class): * - nn.Sequential * - nn.Parallel * - nn.Concat * - nn.Linear * - nn.SpatialConvolution * - nn.SpatialMaxPooling, nn.SpatialAveragePooling * - nn.ReLU, nn.TanH, nn.Sigmoid * - nn.Reshape * - nn.SoftMax, nn.LogSoftMax * * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. */ CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true); /** * @brief Read deep learning network represented in one of the supported formats. * @param[in] model Binary file contains trained weights. The following file * extensions are expected for models from different frameworks: * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/) * * `*.pb` (TensorFlow, https://www.tensorflow.org/) * * `*.t7` | `*.net` (Torch, http://torch.ch/) * * `*.weights` (Darknet, https://pjreddie.com/darknet/) * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit) * @param[in] config Text file contains network configuration. It could be a * file with the following extensions: * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/) * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/) * * `*.cfg` (Darknet, https://pjreddie.com/darknet/) * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit) * @param[in] framework Explicit framework name tag to determine a format. * @returns Net object. * * This function automatically detects an origin framework of trained model * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow, * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config * arguments does not matter. */ CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = ""); /** * @brief Read deep learning network represented in one of the supported formats. * @details This is an overloaded member function, provided for convenience. * It differs from the above function only in what argument(s) it accepts. * @param[in] framework Name of origin framework. * @param[in] bufferModel A buffer with a content of binary file with weights * @param[in] bufferConfig A buffer with a content of text file contains network configuration. * @returns Net object. */ CV_EXPORTS_W Net readNet(const String& framework, const std::vector& bufferModel, const std::vector& bufferConfig = std::vector()); /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. * @warning This function has the same limitations as readNetFromTorch(). */ CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); /** @brief Load a network from Intel's Model Optimizer intermediate representation. * @param[in] xml XML configuration file with network's topology. * @param[in] bin Binary file with trained weights. * @returns Net object. * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine * backend. */ CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin); /** @brief Reads a network model ONNX. * @param onnxFile path to the .onnx file with text description of the network architecture. * @returns Network object that ready to do forward, throw an exception in failure cases. */ CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile); /** @brief Creates blob from .pb file. * @param path to the .pb file with input tensor. * @returns Mat. */ CV_EXPORTS_W Mat readTensorFromONNX(const String& path); /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. * @param image input image (with 1-, 3- or 4-channels). * @param size spatial size for output image * @param mean scalar with mean values which are subtracted from channels. Values are intended * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. * @param scalefactor multiplier for @p image values. * @param swapRB flag which indicates that swap first and last channels * in 3-channel image is necessary. * @param crop flag which indicates whether image will be cropped after resize or not * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. * @returns 4-dimensional Mat with NCHW dimensions order. */ CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F); /** @brief Creates 4-dimensional blob from image. * @details This is an overloaded member function, provided for convenience. * It differs from the above function only in what argument(s) it accepts. */ CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0, const Size& size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F); /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and * crops @p images from center, subtract @p mean values, scales values by @p scalefactor, * swap Blue and Red channels. * @param images input images (all with 1-, 3- or 4-channels). * @param size spatial size for output image * @param mean scalar with mean values which are subtracted from channels. Values are intended * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. * @param scalefactor multiplier for @p images values. * @param swapRB flag which indicates that swap first and last channels * in 3-channel image is necessary. * @param crop flag which indicates whether image will be cropped after resize or not * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. * @returns 4-dimensional Mat with NCHW dimensions order. */ CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0, Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F); /** @brief Creates 4-dimensional blob from series of images. * @details This is an overloaded member function, provided for convenience. * It differs from the above function only in what argument(s) it accepts. */ CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob, double scalefactor=1.0, Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F); /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure * (std::vector). * @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from * which you would like to extract the images. * @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). */ CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_); /** @brief Convert all weights of Caffe network to half precision floating point. * @param src Path to origin model from Caffe framework contains single * precision floating point weights (usually has `.caffemodel` extension). * @param dst Path to destination model with updated weights. * @param layersTypes Set of layers types which parameters will be converted. * By default, converts only Convolutional and Fully-Connected layers' * weights. * * @note Shrinked model has no origin float32 weights so it can't be used * in origin Caffe framework anymore. However the structure of data * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. * So the resulting model may be used there. */ CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, const std::vector& layersTypes = std::vector()); /** @brief Create a text representation for a binary network stored in protocol buffer format. * @param[in] model A path to binary network. * @param[in] output A path to output text file to be created. * * @note To reduce output file size, trained weights are not included. */ CV_EXPORTS_W void writeTextGraph(const String& model, const String& output); /** @brief Performs non maximum suppression given boxes and corresponding scores. * @param bboxes a set of bounding boxes to apply NMS. * @param scores a set of corresponding confidences. * @param score_threshold a threshold used to filter boxes by score. * @param nms_threshold a threshold used in non maximum suppression. * @param indices the kept indices of bboxes after NMS. * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. * @param top_k if `>0`, keep at most @p top_k picked indices. */ CV_EXPORTS_W void NMSBoxes(const std::vector& bboxes, const std::vector& scores, const float score_threshold, const float nms_threshold, CV_OUT std::vector& indices, const float eta = 1.f, const int top_k = 0); CV_EXPORTS_W void NMSBoxes(const std::vector& bboxes, const std::vector& scores, const float score_threshold, const float nms_threshold, CV_OUT std::vector& indices, const float eta = 1.f, const int top_k = 0); CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector& bboxes, const std::vector& scores, const float score_threshold, const float nms_threshold, CV_OUT std::vector& indices, const float eta = 1.f, const int top_k = 0); /** @brief Release a Myriad device is binded by OpenCV. * * Single Myriad device cannot be shared across multiple processes which uses * Inference Engine's Myriad plugin. */ CV_EXPORTS_W void resetMyriadDevice(); //! @} CV__DNN_EXPERIMENTAL_NS_END } } #include #include #endif /* OPENCV_DNN_DNN_HPP */