Testing TCP streaming

master
Benjamin Ruesink 2 months ago
parent 8034f52dfe
commit 4c93ee32df

@ -37,12 +37,20 @@
#include "nvVideoEffects.h"
#include "opencv2/opencv.hpp"
#include "../../../utils/httplib.h"
#include "httplib.h"
#include "mjpeg_streamer.hpp"
//#include <uWebSockets/App.h>
#include <WinSock2.h>
#include <WS2tcpip.h>
#pragma comment(lib, "Ws2_32.lib")
using MJPEGStreamer = nadjieb::MJPEGStreamer;
enum StreamType {
ST_ORIGINAL,
ST_MASKED,
ST_PROCESSED, // testing
ST_MAX
};
@ -53,16 +61,47 @@ struct FrameQueue {
std::vector<FrameQueue> frameQueues(ST_MAX);
struct FrameHolder {
cv::Mat frame;
std::mutex frameMutex;
};
std::array<FrameHolder, ST_MAX> frameHolders;
// Convert cv::Mat to JPEG buffer
std::vector<uchar> matToBytes(const cv::Mat& img) {
std::vector<uchar> buf;
cv::imencode(".jpg", img, buf);
return buf;
}
std::vector<uchar> matToJpeg(const cv::Mat& img) {
std::vector<uchar> buf;
cv::imencode(".jpg", img, buf);
return buf;
}
void updateFrame(int type, const cv::Mat& frame) {
std::lock_guard<std::mutex> lock(frameHolders[type].frameMutex);
frameHolders[type].frame = frame.clone();
}
void pushToFrameQueue(int type, const cv::Mat& frame) {
std::vector<uchar> buffer;
std::vector<int> params = { cv::IMWRITE_JPEG_QUALITY, 80 };
cv::imencode(".jpg", frame, buffer, params);
std::lock_guard<std::mutex> lock(frameQueues[type].frameMutex);
frameQueues[type].frameQueue.push(frame.clone());
cv::Mat finalimg = cv::imdecode(buffer, cv::IMREAD_COLOR);
std::queue<cv::Mat> empty;
std::swap(frameQueues[type].frameQueue, empty);
frameQueues[type].frameQueue.push(finalimg.clone());
}
#ifdef _MSC_VER
@ -738,6 +777,108 @@ bail:
return (FXApp::Err)vfxErr;
}
MJPEGStreamer streamer;
std::mutex clients_mutex;
struct PerSocketData {
};
//std::set<uWS::WebSocket<false, true, PerSocketData>*> clients;
class TcpServer {
public:
TcpServer(int port) : port_(port) {}
void start() {
WSADATA wsaData;
int result = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (result != 0) {
std::cerr << "WSAStartup failed: " << result << std::endl;
return;
}
SOCKET listenSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (listenSocket == INVALID_SOCKET) {
std::cerr << "Error creating socket: " << WSAGetLastError() << std::endl;
WSACleanup();
return;
}
sockaddr_in serverAddr;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(port_);
serverAddr.sin_addr.s_addr = INADDR_ANY;
if (bind(listenSocket, (sockaddr*)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR) {
std::cerr << "Bind failed: " << WSAGetLastError() << std::endl;
closesocket(listenSocket);
WSACleanup();
return;
}
if (listen(listenSocket, SOMAXCONN) == SOCKET_ERROR) {
std::cerr << "Listen failed: " << WSAGetLastError() << std::endl;
closesocket(listenSocket);
WSACleanup();
return;
}
std::cout << "Server listening on port " << port_ << std::endl;
while (true) {
SOCKET clientSocket = accept(listenSocket, NULL, NULL);
if (clientSocket == INVALID_SOCKET) {
std::cerr << "Accept failed: " << WSAGetLastError() << std::endl;
continue;
}
std::cout << "New client connected" << std::endl;
std::thread(&TcpServer::handleClient, this, clientSocket).detach();
}
closesocket(listenSocket);
WSACleanup();
}
void close() {
WSACleanup();
}
private:
void handleClient(SOCKET clientSocket) {
try {
while (true) {
cv::Mat frame1, frame2;
{
std::lock_guard<std::mutex> lock1(frameQueues[ST_ORIGINAL].frameMutex);
std::lock_guard<std::mutex> lock2(frameQueues[ST_MASKED].frameMutex);
if (!frameQueues[ST_ORIGINAL].frameQueue.empty() && !frameQueues[ST_MASKED].frameQueue.empty()) {
frame1 = frameQueues[ST_ORIGINAL].frameQueue.front();
frame2 = frameQueues[ST_MASKED].frameQueue.front();
frameQueues[ST_ORIGINAL].frameQueue.pop();
frameQueues[ST_MASKED].frameQueue.pop();
}
}
if (!frame1.empty() && !frame2.empty()) {
std::vector<uchar> bytes1 = matToBytes(frame1);
std::vector<uchar> bytes2 = matToBytes(frame2);
uint32_t size1 = bytes1.size();
uint32_t size2 = bytes2.size();
send(clientSocket, (char*)&size1, sizeof(size1), 0);
send(clientSocket, (char*)bytes1.data(), bytes1.size(), 0);
send(clientSocket, (char*)&size2, sizeof(size2), 0);
send(clientSocket, (char*)bytes2.data(), bytes2.size(), 0);
}
else {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
}
catch (std::exception& e) {
std::cerr << "Exception in thread: " << e.what() << std::endl;
}
closesocket(clientSocket);
}
const char* ip_;
int port_;
};
FXApp::Err FXApp::processMovie(const char *inFile, const char *outFile) {
float ms = 0.0f;
FXApp::Err appErr = errNone;
@ -753,6 +894,29 @@ FXApp::Err FXApp::processMovie(const char *inFile, const char *outFile) {
if (inFile && !inFile[0]) inFile = nullptr; // Set file paths to NULL if zero length
if (outFile && !outFile[0]) outFile = nullptr;
/*uWS::App().ws<PerSocketData>("/*", {
.open = [](auto* ws) {
std::cout << "A WebSocket connected!" << std::endl;
std::lock_guard<std::mutex> lock(clients_mutex);
clients.insert(ws);
},
.message = [](auto* ws, std::string_view message, uWS::OpCode opCode) {
ws->send(message, opCode);
},
.close = [](auto* ws, int code, std::string_view message) {
std::cout << "WebSocket closed" << std::endl;
std::lock_guard<std::mutex> lock(clients_mutex);
clients.erase(ws);
}
}).listen(9001, [](auto* listen_socket) {
if (listen_socket) {
std::cout << "Listening on port " << 9001 << std::endl;
}
}).run();
*/
if (inFile) {
reader.open(inFile);
} else {
@ -954,89 +1118,41 @@ FXApp::Err FXApp::processMovie(const char *inFile, const char *outFile) {
if (_show) {
drawFrameRate(result);
// Ensure _dstImg is grayscale
if (_dstImg.channels() == 3) {
cv::cvtColor(_dstImg, _dstImg, cv::COLOR_BGR2GRAY);
}
// Find edges
cv::Mat edges;
cv::Canny(_dstImg, edges, 100, 200);
// Dilate the edges
cv::Mat dilatedEdges;
const int iterations = 3; // higher = less detail but less errors
cv::dilate(edges, dilatedEdges, cv::Mat(), cv::Point(-1, -1), iterations);
static std::vector<int> params = { cv::IMWRITE_JPEG_QUALITY, 90 };
// Ensure _srcImg and outlineResult are the same size and type
cv::Mat outlineResult = cv::Mat::zeros(_srcImg.size(), _srcImg.type());
cv::Mat dilatedMask;
cv::dilate(_dstImg, dilatedMask, cv::Mat(), cv::Point(-1, -1), iterations);
/*std::vector<uchar> buff_bgr;
cv::imencode(".jpg", originalImg, buff_bgr, params);
streamer.publish("/original", std::string(buff_bgr.begin(), buff_bgr.end()));*/
// Convert dilatedMask to three channels if needed
if (dilatedMask.channels() == 1) {
cv::cvtColor(dilatedMask, dilatedMask, cv::COLOR_GRAY2BGR);
}
//cv::Mat hsv;
//cv::cvtColor(result, hsv, cv::COLOR_BGR2HSV);
// Find contours
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(dilatedEdges, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
// http://localhost:8080/hsv
/*std::vector<uchar> buff_hsv;
cv::imencode(".jpg", result, buff_hsv, params);
streamer.publish("/masked", std::string(buff_hsv.begin(), buff_hsv.end()));*/
// Find the largest contour
cv::Mat contourTest = cv::Mat::zeros(_srcImg.size(), _srcImg.type());
double maxArea = 0;
int largestContourIndex = -1;
for (size_t i = 0; i < contours.size(); ++i) {
double area = cv::contourArea(contours[i]);
if (area > maxArea) {
maxArea = area;
largestContourIndex = i;
}
}
if (largestContourIndex >= 0) {
// Fill the largest contour
cv::drawContours(contourTest, contours, largestContourIndex, cv::Scalar(255, 255, 0), cv::FILLED);
}
// Convert contourTest to three channels if needed
if (contourTest.channels() == 1) {
cv::cvtColor(contourTest, contourTest, cv::COLOR_GRAY2BGR);
}
pushToFrameQueue(ST_ORIGINAL, originalImg);
pushToFrameQueue(ST_MASKED, result);
// Combine the dilated mask and filled contour
cv::Mat filledRegion;
cv::bitwise_or(dilatedMask, contourTest, filledRegion);
/* std::vector<uchar> buf;
cv::imencode(".jpg", originalImg, buf);
std::string encoded(buf.begin(), buf.end());
// Apply the outline color to the filled region
cv::Vec3b outlineColor(0, 0, 255);
for (int y = 0; y < filledRegion.rows; ++y) {
for (int x = 0; x < filledRegion.cols; ++x) {
if (filledRegion.at<cv::Vec3b>(y, x) != cv::Vec3b(0, 0, 0)) {
outlineResult.at<cv::Vec3b>(y, x) = outlineColor;
}
}
}
std::lock_guard<std::mutex> lock(clients_mutex);*/
/*for (auto ws : clients) {
ws->send(encoded, uWS::OpCode::BINARY);
}*/
// Regular outeline
cv::Vec3b outlineColor2(255, 0, 255);
for (int y = 0; y < dilatedEdges.rows; ++y) {
for (int x = 0; x < dilatedEdges.cols; ++x) {
if (dilatedEdges.at<uchar>(y, x) > 0) {
outlineResult.at<cv::Vec3b>(y, x) = outlineColor2;
}
}
}
//std::this_thread::sleep_for(std::chrono::milliseconds(33)); // ~30 fps
pushToFrameQueue(ST_ORIGINAL, originalImg);
pushToFrameQueue(ST_MASKED, result);
pushToFrameQueue(ST_PROCESSED, outlineResult);
//pushToFrameQueue(ST_PROCESSED, outlineResult);
// Display the results
cv::imshow("Original", originalImg);
cv::imshow("Overlay", result);
cv::imshow("OutlineTest", outlineResult);
//cv::imshow("Original", originalImg);
//cv::imshow("Overlay", result);
//cv::imshow("OutlineTest", outlineResult);
int key = cv::waitKey(1);
if (key > 0) {
@ -1092,12 +1208,8 @@ bool isCompModeEnumValid(const FXApp::CompMode& mode)
void startHttpServer() {
httplib::Server svr;
auto streamHandler = [](StreamType streamType) {
auto frameHandler = [](StreamType streamType) {
return [streamType](const httplib::Request&, httplib::Response& res) {
res.set_content_provider(
"multipart/x-mixed-replace; boundary=frame",
[streamType](size_t offset, httplib::DataSink& sink) {
while (true) {
cv::Mat frame;
{
std::lock_guard<std::mutex> lock(frameQueues[streamType].frameMutex);
@ -1106,40 +1218,28 @@ void startHttpServer() {
frameQueues[streamType].frameQueue.pop();
}
}
if (!frame.empty()) {
std::vector<uchar> bytes = matToBytes(frame);
// Write multipart frame
std::string header = "--frame\r\nContent-Type: image/jpeg\r\n\r\n";
sink.write(header.data(), header.size());
sink.write(reinterpret_cast<const char*>(bytes.data()), bytes.size());
sink.write("\r\n", 2);
std::vector<uchar> jpegData = matToBytes(frame);
res.set_content(std::string(jpegData.begin(), jpegData.end()), "image/jpeg");
}
else {
std::this_thread::sleep_for(std::chrono::milliseconds(30)); // Wait to avoid busy-waiting
}
}
return true; // Continue streaming
res.status = 404;
res.set_content("No frame available", "text/plain");
}
);
};
};
// Array of route names corresponding to StreamType enum
const std::array<std::string, ST_MAX> routeNames = {
"original", "masked", "processed"
"original", "masked"
};
// Set up routes for each frame type
for (int i = 0; i < ST_MAX; ++i) {
std::string route = "/video_" + routeNames[i];
svr.Get(route, streamHandler((StreamType)i));
printf("Streaming %s at http://localhost:8080%s\n", routeNames[i].c_str(), route.c_str());
svr.Get(route, frameHandler((StreamType)i));
printf("Serving %s frames at http://localhost:8080%s\n", routeNames[i].c_str(), route.c_str());
}
svr.listen("0.0.0.0", 8080); // Start server on port 8080
svr.listen("0.0.0.0", 8090);
}
int main(int argc, char **argv) {
@ -1150,7 +1250,11 @@ int main(int argc, char **argv) {
return nErrs;
}
std::thread serverThread(startHttpServer);
/*std::thread serverThread(startHttpServer);
streamer.start(8001);*/
TcpServer server(8093);
std::thread serverThread2(&TcpServer::start, &server);
//httplib::Server svr;
@ -1239,6 +1343,11 @@ int main(int argc, char **argv) {
}
}
server.close();
//serverThread.join();
serverThread2.join();
if (fxErr) std::cerr << "Error: " << app.errorStringFromCode(fxErr) << std::endl;
return (int)fxErr;
}
Loading…
Cancel
Save